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Abstract The objective of this work was to develop a
hydrogel-coated monolith for the entrapment of penicillin G
acylase (E. coli, PGA). After screening of different hydro-
gels, chitosan was chosen as the carrier material for the prep-
aration of monolithic biocatalysts. This protocol leads to
active immobilized biocatalysts for the enzymatic hydrolysis
of penicillin G (PenG). The monolithic biocatalyst was
tested in a monolith loop reactor (MLR) and compared with
conventional reactor systems using free PGA, and a com-
mercially available immobilized PGA. The optimal immobi-
lization protocol was found to be 5 g 17! PGA, 1% chitosan,
1.1% glutaraldehyde and pH 7. Final PGA loading on glass
plates was 29 mg ml~' gel. For 400 cpsi monoliths, the final
PGA loading on functionalized monoliths was 36 mg ml™'
gel. The observed volumetric reaction rate in the MLR was
0.79 mol s™' m™3_  in- Apart from an initial drop in activ-
ity due to wash out of PGA at higher ionic strength, no
decrease in activity was observed after five subsequent
activity test runs. The storage stability of the biocatalysts is
at least a month without loss of activity. Although the mono-
lithic biocatalyst as used in the MLR is still outperformed by
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the current industrial catalyst (immobilized preparation of
PGA, 4.5 mol s m_3ca[alysl), the rate per gel volume is
slightly higher for monolithic catalysts. Good activity and
improved mechanical strength make the monolithic bioreac-
tor an interesting alternative that deserves further investiga-
tion for this application. Although moderate internal
diffusion limitations have been observed inside the gel beads
and in the gel layer on the monolith channel, this is not the
main reason for the large differences in reactor performance
that were observed. The pH drop over the reactor as a result
of the chosen method for pH control results in a decreased
performance of both the MLR and the packed bed reactor
compared to the batch system. A different reactor configura-
tion including an optimal pH profile is required to increase
the reactor performance. The monolithic stirrer reactor
would be an interesting alternative to improve the perfor-
mance of the monolith-PGA combination.

Keywords Monolith - Chitosan - Entrapment -
PenicillinG - Bioreactor

List of symbols

Cy bulk substrate concentration (mol m?)

d, bed diameter (m)

d, monolith diameter (m)

d, particle diameter (m)

(Ey) initial enzyme concentration (mol m™)

Ly bed height of catalyst bed with immobilized

preparation (m)

Lipiosan  layer thickness (m)
L, monolith length (m)
VL reaction volume (m?)
& bed porosity (—)

& monolith porosity (—)
0 density (kg m™3)
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Introduction

Biopolymer supports for enzyme immobilization have cer-
tain advantages over other polymeric materials such as low
cost, ease of enzyme accessibility, hydrophilic character,
and presence of hydroxyl and amine groups on the surface
for interaction with proteins. Enzyme immobilization on
these supports is quick, apparently irreversible, and pro-
vides a nontoxic and biocompatible microenvironment con-
ducive to the catalytic activity and stability of the enzyme.
Hydrogels of natural polymers such as gelatin, chitosan,
xanthan, and agarose can be used conveniently in both wet
and dried states. However, these supports suffer from low
mechanical strength and ease of microbial degradation.
Also the particulate nature of these carriers usually leads to
severe diffusion problems inside the carrier beads. The use
of a thin layer of hydrogel on a monolith support can
strongly reduce these problems.

The term hydrogels refers to a range of polysaccharides
and proteins that are widely used nowadays [1, 2]. Applica-
tions include thickening and gelling of aqueous solutions,
use as super absorbents [3], the use in stabilizing foams,
emulsions and dispersions [4], inhibiting ice and sugar
crystal formation, the controlled release of flavors and
drugs [5, 6], and enzyme immobilization [7, 8]. Immobili-
zation can be done during gelation by adding a cross-linker
to the gelling agent or by enzyme addition after gel prepara-
tion. Simultaneous gelation and immobilization often leads
to deactivation [9], therefore immobilization after gel for-
mation was applied. In this work, penicillin G acylase
(PGA) was immobilized in different gel matrices; alginate,
agarose, gelatin, and chitosan.

It is known [10] that Ca®* alginate gels are not stable
against chelating agents such as phosphate ions, and there-
fore less suitable for PGA immobilization from phosphate
buffer. Also there are some reports that suggest a decreased
activity of immobilized enzyme in Ca’* alginate due to
interaction between the protein and Ca®* [11]. Agarose and
gelatin gels are very susceptible to dehydration, but shrink-
age can be partially reversed by addition of water. Gel for-
mation in a gelatin solution is a thermally reversible
process. Gelatin can therefore only be used at ambient tem-
perature, although addition of a suitable cross-linking agent
could extend the temperature range to elevated tempera-
tures. For chitosan gels, however, extensive swelling of the
gel is frequently observed. The pH of the solution plays a
fundamental role on the swelling degree of the matrix.
Chitosan is a basic carbohydrate with amino groups (pKa is
6.3) [11], and positively charged at pH below 6.3, implying
a higher concentration of amino groups as salt (NH;). Due
to electrostatic repulsion between carbohydrate chains,
swelling is observed. Neutralizing the gels that are formed
in an alkaline solution can reduce the swelling of chitosan
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films. Fixing the polymer chains by cross-linking is also an
effective tool to decrease swelling [12].

The immobilization of PGA on chitosan powder, parti-
cles and beads was already extensively investigated in 1989
[13]. The immobilization of catalase into chitosan beads
prepared by cross-linking with glyoxyl hydrate and rein-
forcement with glutaraldehyde was reported by Cetinus and
Oztop [14]. Cross-linking of chitosan beads with carbodi-
imide is also an option; this technique was successfully
used for the immobilization of lipase [15]. Recently, glu-
cose oxidase was immobilized in porous gels of chitosan-
Si0,, cross-linked with formaldehyde [16].

Since the discovery of penicillin G in the 1940s, penicil-
lin and its derivatives have become the most important
class of antibiotics, because of their low toxicity and their
effectiveness against bacterial infection. The commercial
success of the semi-synthetic antibiotics has quickly
resulted in a worldwide cost-based market [17]. Penicillin
amidohydrolase (E.C. 3.5.1.11) is the official name for pen-
icillin acylase or penicillin amidase [17, 18]. PGA catalyzes
the hydrolysis of an amide bond between a carboxylic acid
and a f-lactam nucleus while leaving the f-lactam intact.
Penicillin acylase from E. coli is the best-studied penicillin
acylase with respect to the synthesis of semi-synthetic anti-
biotics. The enzyme is a heterodimer with a small «-subunit
of 23 kDa and a large -subunit of 63 kDa. The two mono-
mer chains consist of 209 and 557 amino acid residues,
respectively [19]. The protein has an approximate diameter
of 50 A. The isoelectric point for E. coli penicillin acylase
has been reported as pH 6.8 [18] and pH 6.3 [20].

Monoliths are structured supports that are characterized
by long parallel channels, separated by thin walls (Fig. 1).
Compared to conventional trickle bed or stirred reactors,
monoliths offer a low pressure drop over the reactor, resis-
tance to plugging, a high mechanical strength, low axial
dispersion, and high mass transfer rates due to their high
void fraction and large geometric surface area. Monoliths
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Fig. 1 Ceramic Monoliths of different cell density
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are widely applied in catalytic off-gas treatment, like auto-
motive exhaust gas purification [21], de-NO,-ing of power
plant emissions [22].

The objective of this work is to prepare a hydrogel coat-
ing on the interior walls of a monolithic structure for the
immobilization of PGA. The biocatalysts will be character-
ized in terms of activity and stability in the hydrolysis of
penicillin G, and will be compared to conventional reactor
systems.

Experimental
Materials

Colloidal silica solution (Ludox AS-40), agarose type I, and
gelatin A (from porcine skin, bloom strength of 300) were
purchased from Sigma. Sodium alginate was obtained from
Ashland Chemicals. y-(Aminopropyl)triethoxysilane (APTES)
and low viscous chitosan with viscosity <200 mPa s were
purchased from Fluka. Acetic acid and glutaraldehyde were
purchased from Merck. PGA preparations from E. coli, (in
solution and immobilized) were kindly supplied by DSM
Anti-Infectives, Delft, The Netherlands.

Catalyst preparation
Gel preparation on glass plates for screening

Gels were prepared on a glass plate and either used as such
or cut into smaller pieces (2-5 x 5 x 5 mm). For immobili-
zation experiments a concentration of 1.0% (w/v) was used.
Only for gelatin, 3% was needed to get a rigid gel.

Agarose gels were formed by heating a 1% (w/v) solu-
tion to 353 K and subsequent cooling to ambient tempera-
ture. The solution was gently stirred for 3h prior to
cooling.

To prepare the alginate gel, a glass microfiber filter
(Whatman GF/A, 90 mm @) placed on a petri dish was
soaked in 0.25 mol 1™ CaCl, for 60 min to saturate the
filter with calcium. The calcium chloride solution was
poured out and replaced with a sodium alginate solution.

Fig. 2 Different reactor config-
urations used in the enzymatic
hydrolysis of Pen G at 304 K.
STR for batch testing of free and
immobilized beads, fixed bed
set-up (packed bed reactor for
immobilized beads, MLR for
monoliths) for batch testing of
beads and monoliths

Free/lmmob
80 ml, batch

>

;

Gelatin powder was dissolved in water (3% w/v) and
heated to 333 K. Subsequently the solution was cooled to
ambient temperature to form the gel. For enzyme binding, a
cross-linked gel was prepared by adding 0.05% (v/v) glu-
taraldehyde to the gelatin solution. The gel was washed
with demiwater to remove free glutaraldehyde.

Chitosan powder 0.5-2% (w/v) was added to 1% (v/v)
acetic acid and gently stirred (100 rpm) for 3 h at room
temperature. Undissolved matter was removed by filtration
over a 100-um filter. A gel was formed by adding 0.5-2%
glutaraldehyde.

Monolith coating with chitosan

Before coating with a gel, the monoliths were wash-coated
with SiO, and treated with APTES (samples Lx-APTES).

Monoliths (400 cpsi, L, =4 cm, d,, = 2 cm) were coated
with chitosan gel by dip-coating. The monoliths were
placed in a 1.0% w/v chitosan solution containing 1.1% w/v
glutaraldehyde for 60 s. After clearing the channels, the
samples were air-dried (horizontally rotating) for 90 min
(samples Lx-APTES-Chit).

Enzyme immobilization

Gels (5 x5 x 5mm blocks) were suspended in 30 ml
5 g 17! enzyme solution. Immobilization was done at ambi-
ent temperature during 24 h while gently stirring. The pro-
tein concentration followed by measuring the absorbance at
280 nm on a Unicam UV300 UV/vis spectrophotometer.
After washing, 20 ml of phosphate buffer (25 mM pH 7.0)
was added to the gel. Desorption of non-bonded protein
took place at ambient temperature during 24 h, while gently
stirring. Immobilization on chitosan-coated monoliths was
performed in fixed bed set-up (see also Fig. 2¢), consisting
of a chromatography column with a diameter of 26 mm.
Enzyme solution was pumped bottom-up through the col-
umn. Immobilization was performed by recycling a total
volume of 30 ml through the monolith (2 ml min~') at
room temperature for 24 h. Samples were washed with
demiwater to remove unbound enzyme. Biocatalysts were
stored until further use.

15 ml/min 15-52 ml/min
80 ml 80 ml
=
o
3
9 o
Q =
= 5
-3
2 Pen G

Pen G

250 mM ; 250 mM
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Penicillin G hydrolysis

To compare the different biocatalysts, three set-ups were
used; a stirred batch reactor, a packed bed reactor, and a
monolith loop reactor (MLR). The set-ups are schemati-
cally depicted in Fig. 2. During storage at 277 K a slow
decomposition of penicillin G in solution occurs. The inac-
tivation rate constant k;,,., was calculated at 0.009 day~',
i.e., 9%o penicillin decomposition per day by HPLC.
HPSEC (high performance size exclusion chromatography)
was used to detect traces of protein in samples taken from
the reaction mixture.

Batch conversions with free enzyme and immobilized
preparation (PGA beads) were carried out in 80 ml penicil-
lin solution (initial Pen G-ammonia salt concentration
250 mM) in a STR, to which the equivalent of 50 mg
enzyme [(Ey) = 7.8 x 1073 mmol 1-'] was added. The con-
version was measured at pH 8.5 and 7 =304 K by titration
with 1.0 M NaOH of released phenylacetic acid (PAA).

The fixed bed set-up (Fig. 2) was used for penicillin G
hydrolysis with monolithic biocatalysts and immobilized
preparation in packed bed. Total enzyme loading on the
monolithic structure (400 cpsi, L, =4cm, d,=1.9cm,
&y =0.74) was 120 mg PGA. To get an enzyme loading of
120 mg with commercial immobilized penG acylase
(d,=04mm and p,, = 1,050 kg m~), a bed height of
lem was used (dy,=2.6cm, g =0.448). The flowrate
could be varied between 15 and 53 ml min’l, the total reac-
tion volume was 120 ml (initial Pen G concentration
250 mM). NaOH was added to control the pH in the liquid
accumulation vessel.

Characterization
Gel morphology and distribution

Scanning electron microscopy (SEM) was applied to inves-
tigate the distribution of the chitosan gel over both the
length of the monolith and over the cross-section of the
channels. Samples were analyzed on a Philips XL-20 scan-
ning electron microscope operated at 12 kV.

Results
Hydrogel selection

An overview of the PGA loading for each gel is displayed
in Fig. 3. After loading, the gels were extensively washed
with a saline solution to desorb non-covalently bound
enzyme from the matrix.

With 1.0% agarose, strong stiff gels are easily formed
within 1 h. These gels were very susceptible to dehydration,
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Fig. 3 PGA loading on each type of hydrogel, cutinto 5 x 5 x 5 mm
blocks. Lines represent the 95% confidence interval

but shrinkage can be partially reversed by addition of
water. A PGA loading of 7.5 mg ml~! was reached.

Gelatin gels were easy to prepare, although higher con-
centrations were needed (3%) than for the other precursors.
An enzyme loading of 8.0 mg ml~! gel could be achieved
with a gelatin concentration of 3%.

A colorless, transparent alginate-gel was formed within
45 min, which remained intact in NaCl solution. This
meant that no exchange of Ca®* and Na* occurred, gel for-
mation was irreversible. No cross-linking agent was used
here, thus all enzymes were physically entrapped in the gel
matrix. This resulted in a substantial wash out during the
desorption step (see Fig.3). An enzyme loading of
12.5 mg ml~! alginate gel was reached.

Flexible, yellow and transparent chitosan gels can be
formed in 1 h. This gel has the highest immobilization capac-
ity (27.2 mg ml~! gel). Gel formation can easily be controlled
and the gelation occurs gradually. The highest enzyme load-
ing (27 mgml~! gel) was achieved on a chitosan hydrogel;
therefore, chitosan was selected as the carrier for PGA.

Optimization of PGA immobilization using glass plates

The optimal parameters for PGA immobilization on chito-
san gel were determined using 5 mm gel layers on a glass
plate. Chitosan filtrates 0.5% w/v, 1.0% w/v and 2.0% w/v
were used with different degrees of glutaraldehyde cross-
linking. Chitosan filtrate of 2.0% w/v chitosan was a very
viscous solution, this concentration is considered too high
for use within a monolith.

From the results (Fig. 4a) it can be seen that a positive
relation exists between the chitosan concentration and the
amount of immobilized PGA. The optimal chitosan concen-
tration was determined to be 1%.

Penicillin G acylase loading initially increases with
glutaraldehyde concentration, but seems to go through a
maximum at around 1%. The optimum glutaraldehyde con-
centration for this chitosan gel is 1.1% v/v glutaraldehyde



J Ind Microbiol Biotechnol (2008) 35:815-824

819

30 - (a)

F@,, r [10.5 wt% chitosan

- 25 .

— 1.0 wt% chit

= I [ 1.0 wt% chitosan o +
o L -

£ 2 —
215t

©

] L

2 1ot

[0}

2 L

& S

c L

(0]

0
0.24 0.45 0.65 0.83
glutaraldehyde [% v/v]

— (b)
<730t

IS ¢

o L

E t

o 20

£

'8 L

o 4

o 10+

IS

>

2 L

s

0 L 1 L 1 L 1 L 1 L J
0 0.5 1 1.5 2 2.5

glutaraldehyde [% v/v]

Fig. 4 Optimization of the chitosan protocol. a Chitosan concentra-
tion. Glutaraldehyde indicates the glutaraldehyde concentration in the
chitosan/glutaraldehyde mixture before gelation. b Glutaraldehyde
concentration. Immobilization was performed with an initial concen-
tration of 5 g 17!

(Fig. 4b). This value represents the amount of glutaralde-
hyde in chitosan/glutaraldehyde mixture before gelation.

The optimum pH for the immobilization of PGA into a
chitosan hydrogel is near pH 7 (Fig. 5). The optimal condi-
tions to prepare a PGA loaded chitosan gel were thus set at
5 g 17! PGA, pH 7 on a 1.0% chitosan gel with 1.1% glutar-
aldehyde. The final loading under these conditions is
around 30 mg m1~! gel.
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Fig. 5 Effect of pH on PGA loading at 5 g I'' PGA

Chitosan coated monoliths

Assuming a homogeneous gel layer throughout the channel,
the average layer thickness is calculated to be around
90 um. Layer thickness and enzyme loading are summa-
rized in Table 1. For comparison, the results for bare mono-
liths (no SiO,/APTES) are also included.

The immobilization of PGA was followed during 24 h to
establish the time necessary to reach “steady-state” loading.
The use of APTES for covalent attachment of the chitosan
layer to the monolith surface, has a positive effect on layer
thickness and total enzyme loading.

In order to create even more anchors in the chitosan gel
for binding PGA, monolith structures (Lx_APTES) were
treated with a glutaraldehyde solution subsequent to the gel
formation and aging step. This did not improve total PGA
loading (see Table 1), but only a slight decrease in the final
loading capacity was observed. During immobilization,
aggregate formation was observed in the PGA bulk solu-
tion. This indicated the release of free glutaraldehyde from
the chitosan gel. The aggregates of cross-linked enzymes
were unable to diffuse into the gel pores. Aggregate forma-
tion within the gel led to blocking of pores, thus preventing
additional enzyme binding.

Scanning electron microscopy

Scanning electron microscopy was performed to investigate
the distribution of the chitosan layer in the monolith. Due to
the vacuum the gels are completely dehydrated, it is there-
fore not possible to quantify the layer thickness from the
SEM micrographs. Chitosan forms a gel layer over the sil-
ica coating both in the center and in the corners of the
monolith channels. The macro pores in the cordierite
remain (partially) open (Fig. 6a, b).

A gel layer is also found on silica dispersed in the cor-
dierite macro pores, but the pores are not completely filled.

Stability

The operational stability of PGA on a chitosan coated
monolith system was investigated by repeated use of the

Table 1 Monolith coating with chitosan layer (C_Chit), with optional
pre-conditioning of the support

Carrier Enzyme Chitosan Enzyme
loading/L ;;0san loading
(% wiw/pm) (mgml™',)
Chit PGA 24177 32
Lx-APTES-Chit PGA 28/89 36
Lx-APTES- PGA 28/89 30
Chit-GA

@ Springer
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Fig. 6 SEM micrographs of chitosan layers on washcoated and functionalized cordierite. a, b Gel distribution through a functionalized monolith
channel, most of the macro pores are filled c) corner of a channel, showing accumulation of gel

same monolith structure under equal reaction conditions
(Fig. 7). Activity drops initially, probably due to loss of
unbound enzyme. Activity remains constant from the sec-
ond cycle onwards during four successive conversions and
no free protein was detected.

The sample was stored at 277 K for 35 days between the
third and fourth conversion cycle without notable loss of
activity. This shows that the storage stability of PGA on a
chitosan-coated monolithic structure is at least a month
without loss of enzyme activity.

Hydrolysis of penicillin G

Catalyst performance tests were used to compare the free
enzyme, immobilized preparation, and the monolithic bio-
catalysts under process conditions.

Catalyst performance

In a set of experiments in a batch reactor (V; =80 ml,
C, =0.250 mol m~3) the initial reaction rate of free and
immobilized enzyme was determined. In Fig. 8 the initial
rates of free and immobilized (monolith/commercial beads)
PGA are compared. The chitosan beads show a lower initial
rate as compared to the free enzyme. The performance of

1.0
K% K I
be v Y
0.8+ . Pol
: * QD%
&, %
5 0.6 ;gﬁ & run 1
2 i
[} XX Orun2
% 0.4+ *ﬁx
3 g& Arun3
0.2+ X run 4 after 35 d storage
X run5
0.0 L : . !
0 50 100 150 200
time [min]

Fig. 7 Conversion of PenG with a monolith-PGA combination during
repeated use, at 304 K and pH 8.50
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the monolithic biocatalyst is similar to that of the catalyst
beads in STR.

Comparison of the different reactor configurations

The performance of a monolithic structure in the MLR is
compared with the performance of a packed bed of immo-
bilized preparation in the column at different flow rates.
Hydrolysis of a 250 mol m~3 PenG solution was done with
a total enzyme loading in the bed equivalent to the enzyme
loading on the monolith (120 mg, Ly~ 1 cm) and with
monolithic structures loaded with PGA (configurations as
presented in Fig. 2). The rate of conversion, represented by
the liberation of product (PAA) is presented in Fig. 9. The
highest conversion rates were observed for free PGA and
immobilized preparation in a STR. It was found that for
commercial immobilized PGA, used in a packed bed, the
reaction rate is higher in downflow operation than in upflow
operation (Fig. 9). The performance of a monolith in the
MLR (upflow) is lower than for a catalyst bed in downflow,
but higher than for the catalyst bed in upflow operation.

For 400 cpsi monoliths, the volumetric activity is around
0.79 mol s™''m=3__ ... Although the MLR does not per-
form Dbetter than the current industrial catalyst
(4.5 mol s™' m™’ ), the intrinsic rates in STR are com-
parable (Fig. 8).

Discussion
Hydrogel selection

For application on monoliths, the gel should be stable and
easily applicable inside the channels. Selection of a suitable
hydrogel for the immobilization of PGA should ideally be
based on the recovered enzyme activity. This activity, how-
ever, depends on enzyme loading, enzyme distribution and
substrate/product diffusion. Therefore, only the final enzyme
loading (Fig. 3) is used as a selection criterion here.
Alginate is less suitable for entrapment of enzymes
because they tend to leach out. An enzyme loading of
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Fig. 9 Product (PAA) concentration over time, representing activity of
free PGA, immobilized preparation, and monolith reactor. Configura-
tions are presented. PGA loading in the reactor in all tests is 120 mg
enzyme, at 304 K and pH 8.50

12.5 mg ml~" alginate gel was reached. It is expected that
level will drop even further after more extensive washing.
A PGA loading of 7.5 mg ml~! was reached on agarose gel
and a loading of 8.0 mg ml~! gel could be achieved on the
gelatin sample (3% gelatin). No significant shrinkage of
these gels was observed. However, the enzyme loading is
expected to be too low for use on monoliths. The chitosan
gel has the highest immobilization capacity (27.2 mg ml~!
gel). Gel formation can easily be controlled and the gela-
tion occurs gradually. This would make chitosan a very
suitable gel to be applied on monolithic structures.

All biopolymers provide physically stable hydrogels.
The effect of enzyme loading as a function of layer thick-
ness was observed for all hydrogels. This is in agreement
with earlier studies [5, 23]. The application of alginate
within the monolith channels seems possible, but a two-
step coating is needed. Gelatin can only be used at ambient
temperatures, and has a significantly lower loading capacity
than chitosan. Both chitosan and gelatin are cross-linked

via amine groups with glutaraldehyde. The enzyme is then
bound to free glutaraldehyde groups via lysine amino
groups. But the loading on gelatin gel is much lower than
on chitosan (see Fig. 3). Since gelatin contains less free
amino groups (about 27 lysine residues per 1,000 amino
acids) than chitosan (1 amino group per repeating unit, 75—
80 wt% of which are deacetylated), theoretical maximum
enzyme loading on chitosan is expected to be significantly
higher than for gelatin.

Penicillin G acylase loading on agarose could not be
increased significantly by modifying the gel, final loading
was only 25% of the final loading on chitosan. The highest
enzyme loading (27 mg ml~' gel) was achieved on a chito-
san hydrogel; therefore, chitosan was selected as the carrier
for PGA.

Optimization of PGA immobilization

The optimal parameters for PGA immobilization on chito-
san gel were determined by using 5-mm gel layers on a
glass plate (Figs. 4, 5). For all glutaraldehyde concentra-
tions, more enzyme can be bound to the more concentrated
gel, because an increased chitosan concentration increases
the amount of binding sites (amino groups) present in the
gel. But on the other hand, a higher chitosan concentration
increases the degree of cross-linking. This negatively
affects enzyme loading. An advantage of a more dense gel
structure at higher chitosan concentration would be reduced
swelling and shrinking effects [12]. The optimal chitosan
concentration was determined to be 1%, leaving reasonable
flow properties for possible application inside a monolith
channel.

The optimum glutaraldehyde concentration for this
chitosan gel was found to be 1.1% v/v glutaraldehyde
(Fig. 4b). Initially, enzyme loading increases with glutaral-
dehyde concentration. Above a certain maximum, enzyme
loading starts to drop. Two opposing mechanisms seem to
determine the position of the maximum; (1) at low concen-
trations both aldehyde groups in each glutaraldehyde
molecule are involved in network formation. As the glutar-
aldehyde concentration increases an increasing number of
free aldehyde groups will be present for binding with a
lysine residue in PGA. (2) But at higher glutaraldehyde
concentrations the enzyme loading starts to decline due to
restrictions by the degree of cross-linking.

The optimum pH (7) for PGA immobilization (Fig. 5)
corresponds to the optimum found for the immobilization
of penicillin acylase on nylon particles via glutaraldehyde
activation [24], although minimal differences in enzyme
loading were observed at pH 6-8. This is confirmed by
Braun et al. [13], who reported no significant increase in
enzyme loading at pH 6-8. An explanation for the decrease
in immobilization at a pH outside this range could be

@ Springer



822

J Ind Microbiol Biotechnol (2008) 35:815-824

related to the ionic strength of the immobilization solution,
or a negative correlation between enzyme activity and
phosphate concentration [24]. Although the effect of salt
concentration was not incorporated in this study, it is
advised to use only a minimal amount of phosphate to con-
trol the immobilization solution at the desired pH. Since the
PGA formulation consisted of a low concentration phos-
phate buffer at pH 7.0, this pH was set a optimum pH for
this study.

Chitosan-coated monoliths

The chitosan layer thickness as calculated is an average
over the entire monolith structure (Table 1). In practice,
however, the gel film in a square channel will not be uni-
form. As a result of the surface tension during gelation, it
will accumulate in the corners resulting in “rounded” chan-
nels (Fig. 6¢).

Penicillin G acylase immobilization was followed for
24 h. For practical reasons, an immobilization time of 2 h,
in which 80% of equilibrium is reached, is recommended.
This approach matches reasonably well with the current
industrial immobilization process for PGA-gel particles
with a similar diffusional distance d/6 as is observed for
the gel coatings that are used in this study. Strictly speak-
ing, local layer thickness in the monolith channel is not
constant; in the corners, the diffusion distances will be
somewhat larger than d,/6, at the channel wall probably a
bit smaller.

PGA loading can be affected by pretreatment of the
monolithic support (Table 1). The optimal preparation
method of monolith-chitosan supports consists of applying
a washcoat and a chemical linker (APTES). Post-immobili-
zation treatment with glutaraldehyde is not recommended.

When investigating the operational stability of the PGA-
monoliths, observed activity initially dropped. This was
caused by the loss of the unbound enzyme. This was con-
firmed with HP-SEC analysis for free protein (loss 5.4 mg,
7.7%). Initial washing does not remove enzyme bound by
ionic interactions, but the increased ionic strength in the
PenG reaction mixture does remove this loosely bound
enzyme. Therefore the introduction of a washing step with
a suitable salt solution was suggested. Activity remained
constant from the second cycle onwards during four succes-
sive conversions and no free protein was detected. This is
in agreement with the immobilization of lipase onto chito-
san beads [25]. Lipase retained an activity of 92% after six
cycles.

Activity in hydrolysis of penicillin G

Catalyst performance tests were used to compare the free
enzyme, immobilized preparation, and the monolithic bio-
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catalysts under process conditions (Figs. 8, 9). The chitosan
beads seemed to suffer from internal mass transport prob-
lems (lower conversion) when compared to the free
enzyme, as already described by Schroén et al. [26]. It was
found that for this type of matrix the intrinsic reaction rate
does not significantly decrease as a result of immobilization
[26]. This was validated by grinding commercial PGA par-
ticles and comparing the initial rate. The initial rate for the
smaller particles was the same as for the free enzyme. An
additional problem is the production of acid (PAA). This
results in pH gradients inside the gel matrix due to the cou-
pling of reaction and diffusion of substrates and products
within the carrier. This explains the higher apparent reac-
tion rate for the PGA beads in a fluidized bed (STR, see
Fig. 8) compared to the same amount of biocatalyst in a
packed bed (Fig. 9).

For operation in a packed bed reactor it was found that
with commercial immobilized PGA (packed bed), the reac-
tion rate is higher in downflow operation than in upflow
operation. From these results, it is clear that the flow direc-
tion and reactor configuration have a significant impact on
the observed reaction rate. Since no pressure drop exists
over the bed, rates of convective mass transfer at the scale
of a particle can be assumed equal in both upflow and
downflow operation. It is believed that the flow distribution
in the radial direction in upflow operation is uneven com-
pared to the downflow regime, leading to a lower observed
reaction rate for the downflow-case.

The performance of a monolith in the MLR (upflow) is
lower than for a catalyst bed in downflow, but higher than
for the catalyst bed in upflow operation. Measurement of
pH in the effluent supports that the conversion rate is equal
for monolithic structure and a bed packed with gel beads,
because the pH gradient over the column is the same for
both monolith and packed bed. This indicates that an equal
amount of substrate has been converted. A fair comparison
between the monolith MLR-system and a packed bed of gel
beads is difficult due to the existence of external mass trans-
fer limitations. The performance of the MLR seems to be
affected by the large initial drop in pH over the monolith
(pH directly drops to around 5, severely limiting further
hydrolysis of PenG) and diffusion limitations inside the
chitosan gel (also locally the slow diffusion of PAA through
the gel causes very low pH). These results underline the
importance of realizing short diffusion lengths by control of
the thickness of a gel layer coated on a monolithic struc-
ture. When used in a STR set-up, this effect is diminished
by the constant pH in the reactor, whereas in our tubular
reactor (packed bed or monolith) in the axial direction a pH
gradient was present. Alternative configurations should be
considered to improve the efficiency of the MLR (interme-
diate NaOH addition, different reactor configuration).
Although the MLR does not perform better than the current
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industrial catalyst (4.5 mols™ m_BCalalysl), the intrinsic
rates measured in a stirred system are comparable. When
operated in a batch STR configuration, the monolithic bio-
catalyst shows a significantly higher activity due to the con-
stant pH in the reactor. This makes the chitosan-based
monolithic biocatalyst an interesting alternative for gel
beads, worth studying in more detail. An interesting alter-
native for the MLR in terms of pH control could be the
monolithic stirrer reactor (MSR), in which monoliths are
used as stirrer blades. This reactor has been successfully
applied for different applications [27, 28], including enzy-
matic reactions [29].

Conclusions

Chitosan gel was found to be the best gel for immobiliza-
tion of PGA. Cross-linked chitosan gel is stable and suit-
able for use within monolith channels. The immobilization
parameters have been optimized, using thin (200 pm) chito-
san layers coated on a glass surface. The optimal conditions
for the immobilization process are:

+ 10gl'enzyme

e  1.0%wl/v chitosan

e 1.1%v/v glutaraldehyde (GA)
e pH70.

Coating of 400 cpsi monoliths with a chitosan layer yields a
smooth layer with an average layer thickness of 77 um.
With an extra washcoating and silanization step, the layer
thickness can be increased to 95 um. SEM revealed that the
gel is evenly distributed along the length of the monolith
structures, but most of the chitosan has been accumulated
in the corners of the channels.

The optimal preparation method of monolith-chitosan
supports consists of applying a washcoat and a chemical
linker (APTES). An immobilization time of 2 h is sufficient
to reach 80% of the maximal enzyme loading. Post-immo-
bilization with glutaraldehyde is not recommended. The
loading capacity for PGA on chitosan-coated monoliths is
36 mg ml~! gel, which is in the same order of magnitude as
the enzyme loading achieved on chitosan coated glass
plates. For 400 cpsi monoliths, the volumetric activity in
the hydrolysis of PenG was 0.79 mol s~ !m=___ ... The
operational stability was tested in five consecutive reaction
cycles. The catalyst lost 7% of its activity after the first
cycle, but no enzyme loss or deactivation was detected over
the four subsequent reaction cycles. The monolith system is
stable after storage for 35 days. The performance of the
current industrial catalyst is superior to the performance of
a PGA monolith in a conventional fixed bed set-up (MLR).
The reactor set-up has a large impact on the observed
reaction rate. In a stirred system, the volumetric activity

of the monolith-PGA system increases significantly and
approaches the values found for the PGA beads. For the
industrial catalyst beads, the same effects are observed; the
apparent reaction rate is 2.5 times higher if the bed is fluid-
ized in the reaction vessel than for the same amount of bio-
catalyst in a packed bed. For these beads however, internal
diffusion limitations imposed by immobilization in a gel
network, decrease the efficiency of the immobilized
enzyme. The observed reaction rate of the PGA beads is
50% lower than an equal amount of free enzyme. This
underlines the importance of realizing short diffusion
lengths by control of the layer thickness of a gel coating on
a monolithic structure.

The pH-dependence of the reaction is the main problem
for the under-performance of the monolith reactor. To
address this problem, other reactor configurations need to
be explored.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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